×

Embodied carbon

Dr Jannik Giesekam

Chancellor's Fellow, University of Strathclyde jannik.giesekam@strath.ac.uk 10.02.25

Agenda

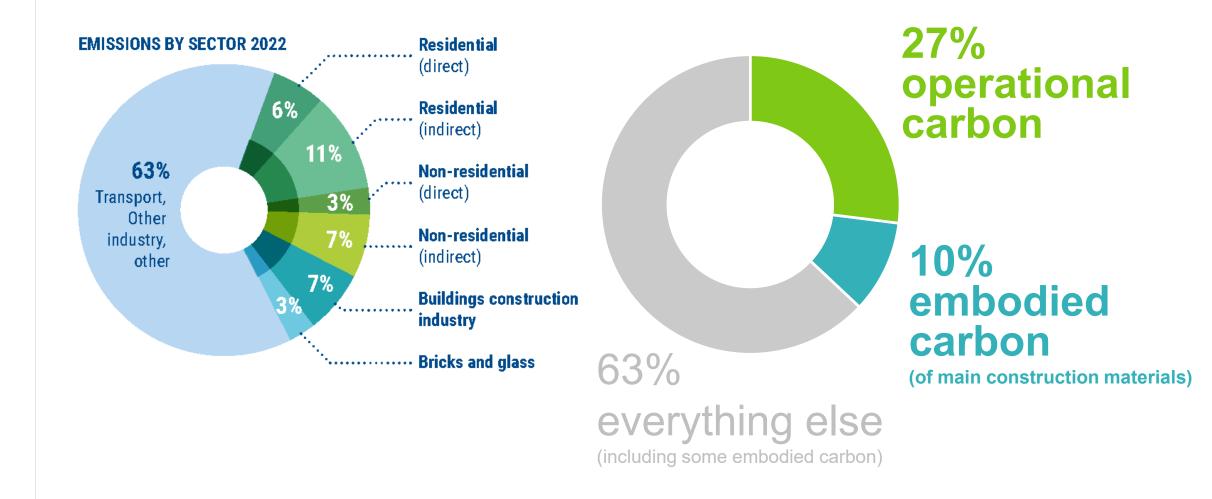
- What is embodied carbon?
- How do you assess it?
- How is the UK ecosystem of requirements, standards and guidance evolving?
- How can I stay abreast of developments?

International **UK ecosystem** standards ISO 14040, ISO 14044 BS EN 15978, BS EN 17472 **Assessment** UK Net Zero Carbon Voluntary standard standard **Buildings Standard** Local planning requirements **BECD Product & asset** databases assessment for the **Public procurement** built environment standards PART Z **Industry-proposed** regulation (RICS --- proposal **Guidance, supplementary standards & benchmarks Tools** One Embodied carbon in building services: Consistency in Whole Life Carbon management in buildings and infrastructure Whole life carbon assessments CARBON **FCBS CARBON** 1 Presptima **ECCOLAB**

RICS RIBA CIBSE

IStructE

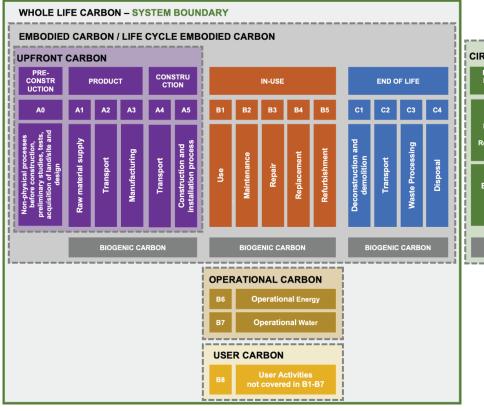
LETI

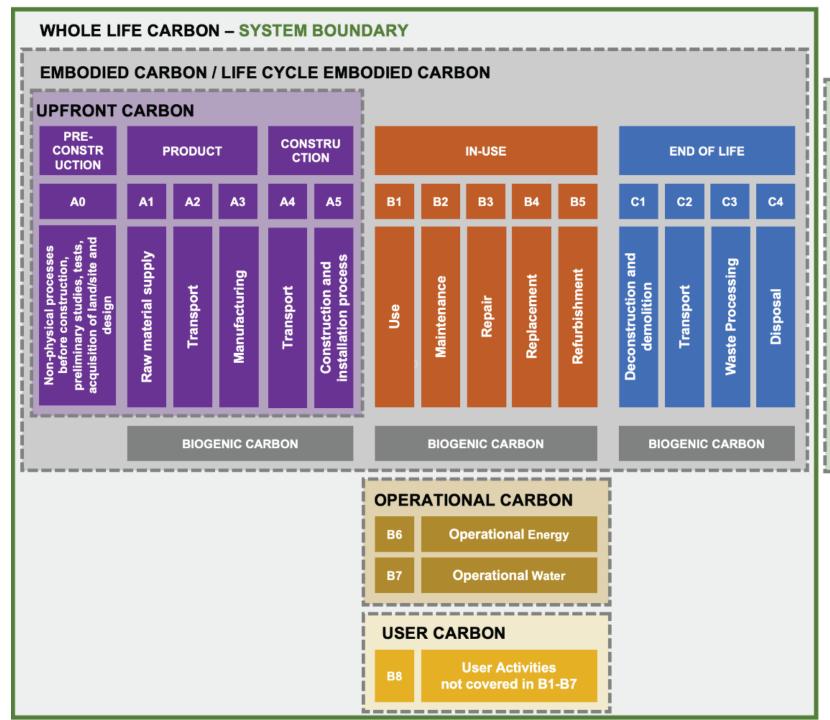

PAS2080 UKGBC

WLCN

WHAT IS EMBODIED CARBON?

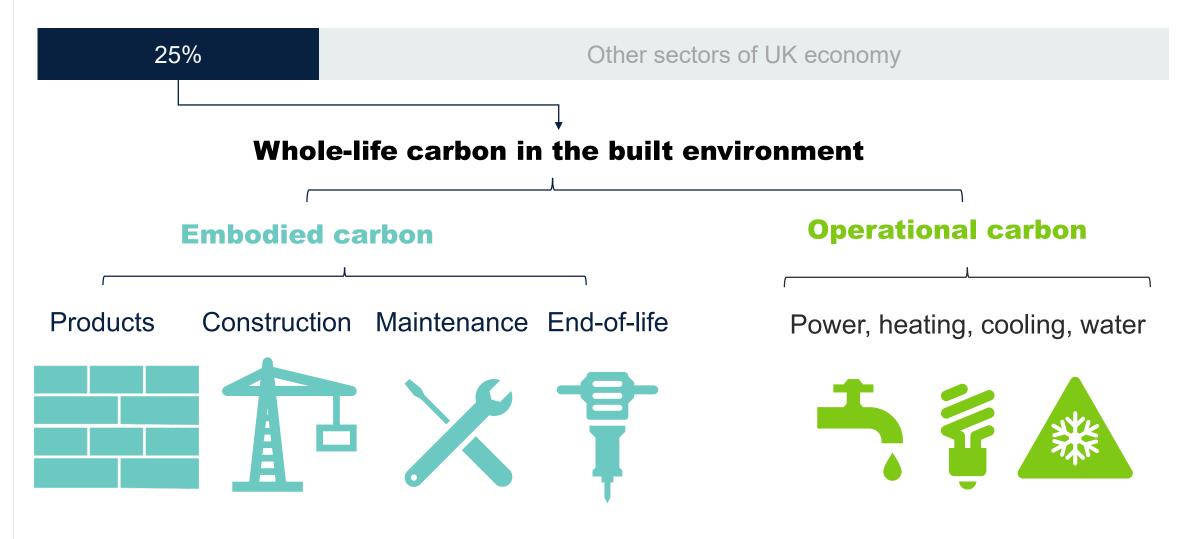
Terminology, guidance & trends

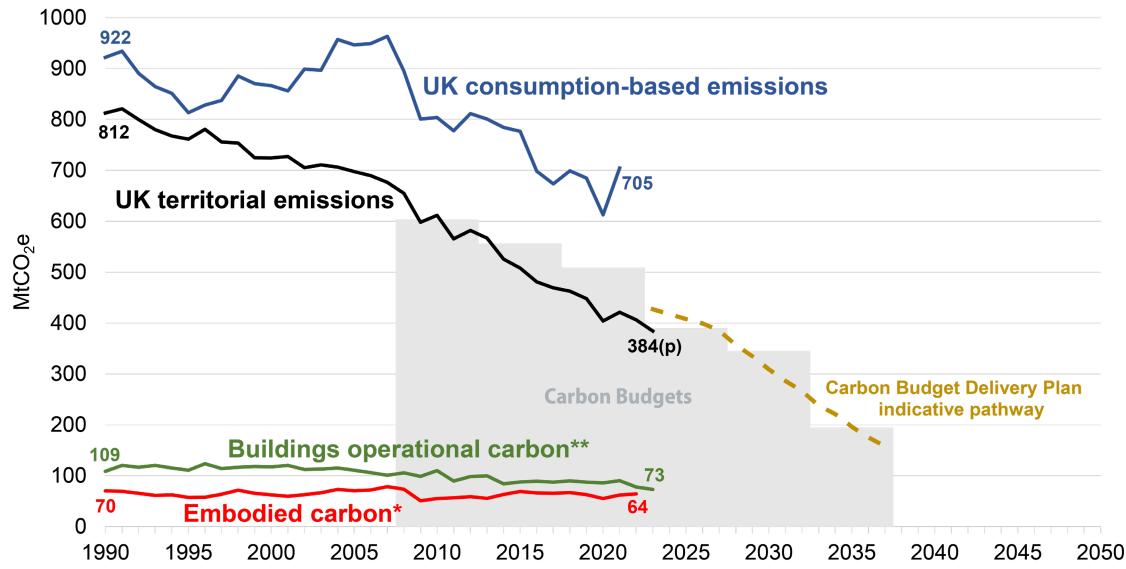

Global energy & process CO₂ emissions


Improving Consistency in Whole Life IStruct≣ LETI Carbon **Assessment** and Reporting Carbon Definitions for the Built Environment, Buildings & Infrastructure For inclusion in the update of the RICS Professional Statement: 'Whole life carbon assessment for the built environment'- 2023 RIBA W RICS GBC (WLCN)

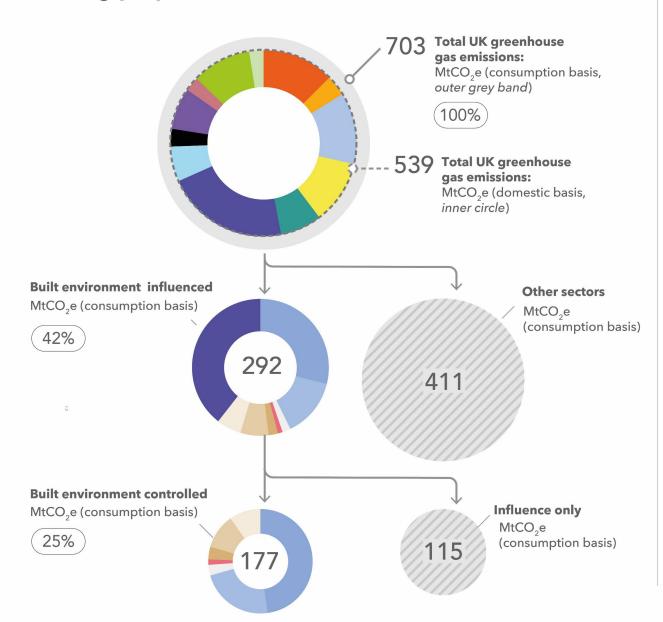
January 2023

Definitions



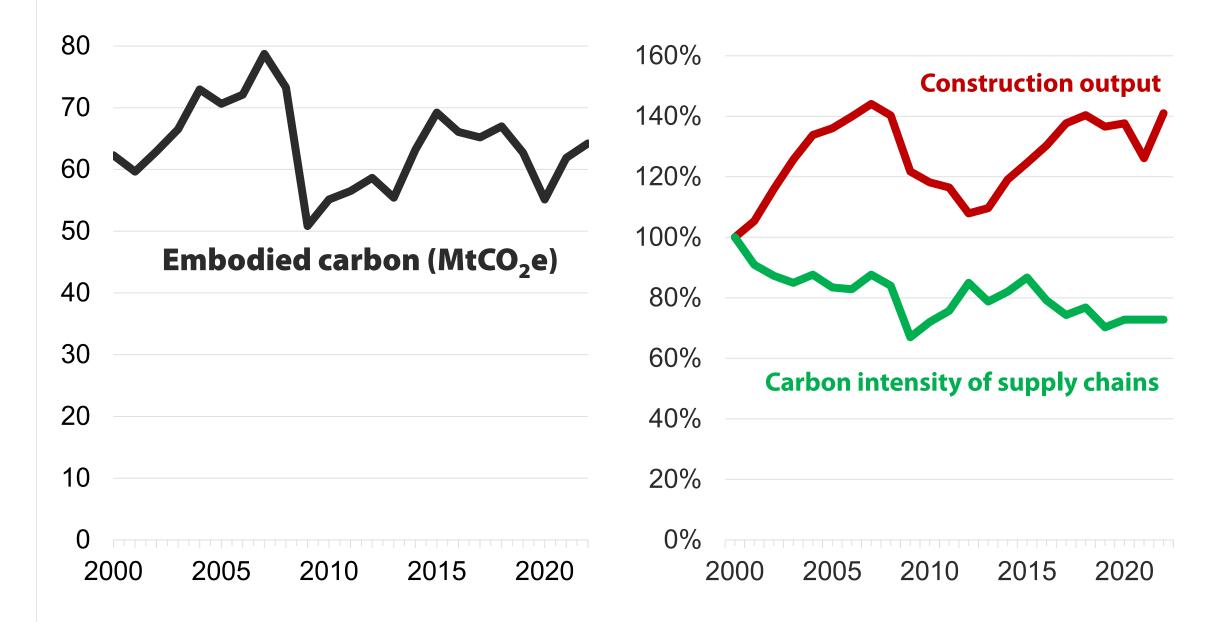


CIRCULAR ECONOMY BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARY Net Flows from: Reuse, Recycling, Energy Recovery, Other Recovery D2 Exported Utilities: e.g. Electric Energy, Thermal Energy, **Potable Water BIOGENIC CARBON**


UK's carbon footprint

Embodied carbon is ~9% of UK emissions

Total UK GHG emissions (2018 CCC Data) showing proportion of Built Environment emissions


CCC SECTORS (TOP CIRCLE)

- Residential buildings
- Non-residential buildings
- Manufacturing & construction
- Electricity supply
- Fuel supply
- Surface transport
- Waste
- F-gases
- Aviation
- Shipping
- Agriculture
- Land Use, Land-Use Change & Forestry

BUILT ENVIRONMENT SECTORS

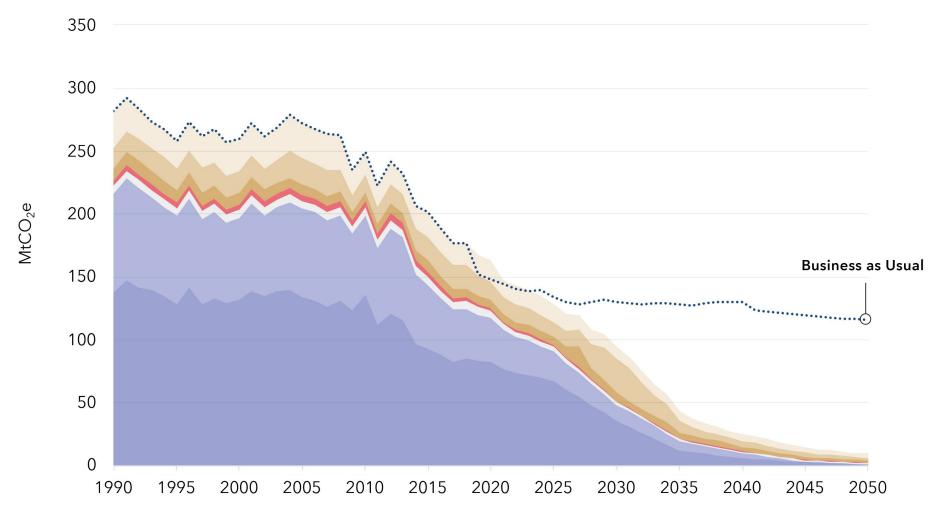
- Buildings (Non Domestic) Embodied Carbon
- Buildings (Domestic)
 Embodied Carbon
- Infrastructure Embodied Carbon
- InfrastructureOperational carbon
- Buildings F-Gas
- Buildings (Non-domestic)
 Operational Carbon
- Buildings (Domestic)Operational Carbon
- Surface transport

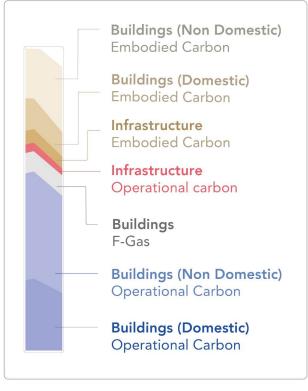
UK built environment trends

Net Zero Roadmap

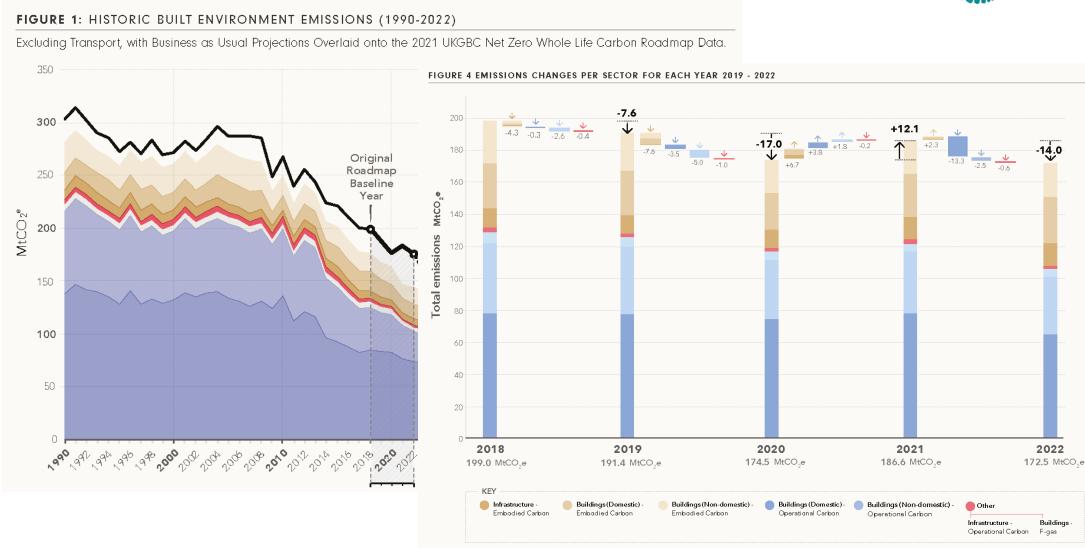
Outlines a common vision & industry-wide actions for achieving net zero carbon in the construction, operation, & demolition of buildings & infrastructure in the UK.

Based on input from >100 stakeholders across industry





UK Built Environment GHG Emissions 1990-2050



Roadmap progress update

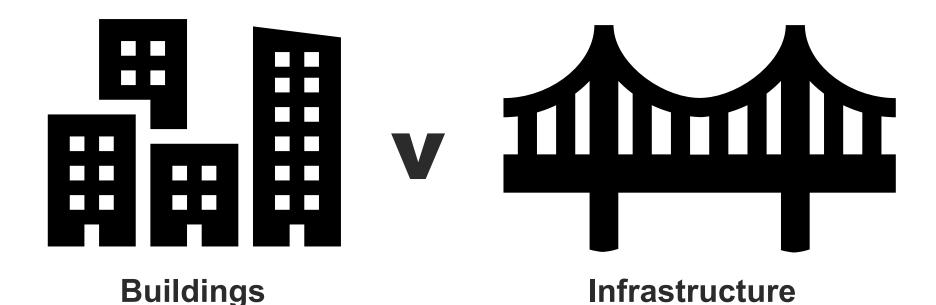
Typical housing project split

Embodied carbon Operational carbon Current mass housebuilder 46% 54% designs that just meet regs Modern, lowenergy design 28% 72% that meets **Future Homes** Unregulated Regulated Standard

Scale – buildings

100kt 100t 1kt 10kt 10t 1t **4x brick pallets** Landsec ~1 tCO2 At 232 kgCO₂e/t brick **Development** (A1-A5) from UK clay brick EPD **Pipeline** 209,051 tCO₂e **5 Broadgate** Forecasted total 46,324 tCO₂e **King's Cross Sports Hall** embodied carbon in 13 storeys, 65,300m² of office 709 tCO₂e 2021 Sustainability space to practical completion 2000m² facility, LETI B-rated for embodied Report carbon & sequesters 638 tCO₂

Scale - infrastructure


10 kt 100 kt 1 Mt 10 Mt HS₂ M54-M6 Link Road A14 extension 13.3 MtCO2e 81,890 tCO2e 981,432 tCO2e 23 miles of upgrades 1.6 miles new road 2 new junctions 7 miles widening & some realignment new bypass & local modifications Heathrow 3rd runway 3.6 MtCO2e

HOW DO YOU ASSESS IT?

Standards, tools & data

Differences in terminology & standards

e.g. BS EN 15978

e.g. BS EN 17472

Basic calculation

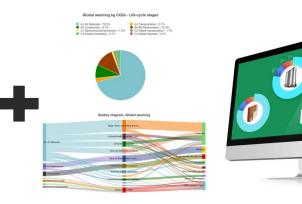
materials

Embodied carbon (kgCO₂e) =

I \circ

 \times

Typical assessment of a building


Material quantities e.g. from building model or BoQ

from EPD or generic carbon factors

Assessment standards e.g. BS EN 15978 + RICS PS

Software tool e.g. OneClickLCA \times

What is an EPD?

- An Environmental Product Declaration provides environmental information from a LCA in a standardised format using a consistent methodology
- Based on standards combined with Product Category Rules (PCR) and independently verified
- Basically LCA+PCR = EPD

bre

Statement of Verification

BREG EN EPD No.: 000311

Issue 02

This is to verify that the

Environmental Product Declaration

rovided by

Kingspan Insulation Ltd

is in accordance with the requirements of:

EN 15804:2012+A1:2013

and

BRE Global Scheme Document SD207

This declaration is for:

Kingspan Kooltherm K5 External Wallboard, Kingspan Kooltherm K20 Concrete Sandwich Board

Company Address

Kingspan Insulation Limited Pembridge Herefordshire HR6 9LA

F.Baker

mma Baker

07 April 2022

21 January 2021

20 January 2026

Expiry Date

BF1805-C Rev 0.1

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms.

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

8RE Global Ltd., Garston, Watford WD25 9XX.
T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

Page 1 of 16 © BRE Global Ltd, 2017

bre

Environmental Product Declaration

EPD Number: 000311

General Information

EPD Programme Operator	Applicable Product Category Rules
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013

Commissioner of LCA study	LCA consultant/Tool
Kingspan Insulation Limited Pembridge Herefordshire HR6 9LA	BRE LINA Tool v2.07

Declared Unit	Applicability/Coverage		
1m² of insulation at a thickness that gives an R-value of 2.857m².K/W (60mm)	Product Specific		
,			
EPD Type	Background database		

Demonstration of Verification

CEN standard EN 15804 serves as the core PCR ^a

Independent verification of the declaration and data according to EN ISO 14025:2010

□Internal ⊠ External

(Where appropriate b)Third party verifier: Nigel Jones

a: Product category rules

b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A1.2013. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A1:2013 for further quidance

bre

Scenarios and additional technical information

Scenarios and additional technical information							
Scenario	Parameter	Units	Results				
	Description of scenario						
A4 – Transport to the building site	Fuel type / Vehicle type	Litre of fuel type per distance or vehicle type	Lorry >32 metric tons				
	Distance	km	523				
	Capacity utilisation (incl. empty returns)	%	86				
	Bulk density of transported products	kg/m³	35				
A5 – Installation in the building	Description of scenario						
	Installation wastage rate	% of product	2				
	Installation waste sent to landfill	kg	0.042				
	Description of scenario						
C1 to C4 End of life,	Transport type	Vehicle type	Lorry >32 metric tons				
	Distance	km	523				
	Crushing and compacting of waste into briquettes	мЈ	9.48e-8				
	Waste for energy recovery	kg	1.87				
	Waste to landfill	kg	0.19				

pre

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing environmental impacts									
			GWP	ODP	AP	EP	POCP	ADPE	ADPF
			kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO ₂ equiv.	kg (PO ₄) ³⁻ equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG	AGG
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG	AGG
	Manufacturing	А3	AGG	AGG	AGG	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	3.98e+0	4.83e-7	2.30e-2	5.14e-3	3.92e-3	3.07e-5	1.32e+2
Construction	Transport	A4	1.00e-1	1.90e-8	3.43e-4	9.04e-5	7.10e-5	1.68e-7	1.56e+0
process stage	Construction	A5	8.21e-2	1.02e-8	4.69e-4	1.06e-4	8.03e-5	6.19e-7	2.69e+0
Use stage	Use	B1	MND	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND	MND	MND	MND
	Replacement	B4	MND	MND	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND	MND	MND
	Operational energy use	В6	MND	MND	MND	MND	MND	MND	MND
	Operational water use	В7	MND	MND	MND	MND	MND	MND	MND
	Deconstruction, demolition	C1	MND	MND	MND	MND	MND	MND	MND
End of life	Transport	C2	1.00e-1	1.90e-8	3.43e-4	9.04e-5	7.10e-5	1.68e-7	1.56e+0
	Waste processing	СЗ	1.58e-8	1.02e-15	8.58e-11	1.97e-11	4.88e-12	1.91e-14	2.44e-7
	Disposal	C4	1.97e-3	5.18e-10	1.38e-5	4.52e-6	2.29e-6	1.79e-9	4.83e-2
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND	MND	MND	MND

GWP = Global Warming Potential; ODP = Ozone Depletion Potential; AP = Acidification Potential for Soil and Water; EP = Eutrophication Potential; POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential — Elements; ADPF = Abiotic Depletion Potential — Fossil Fuels;

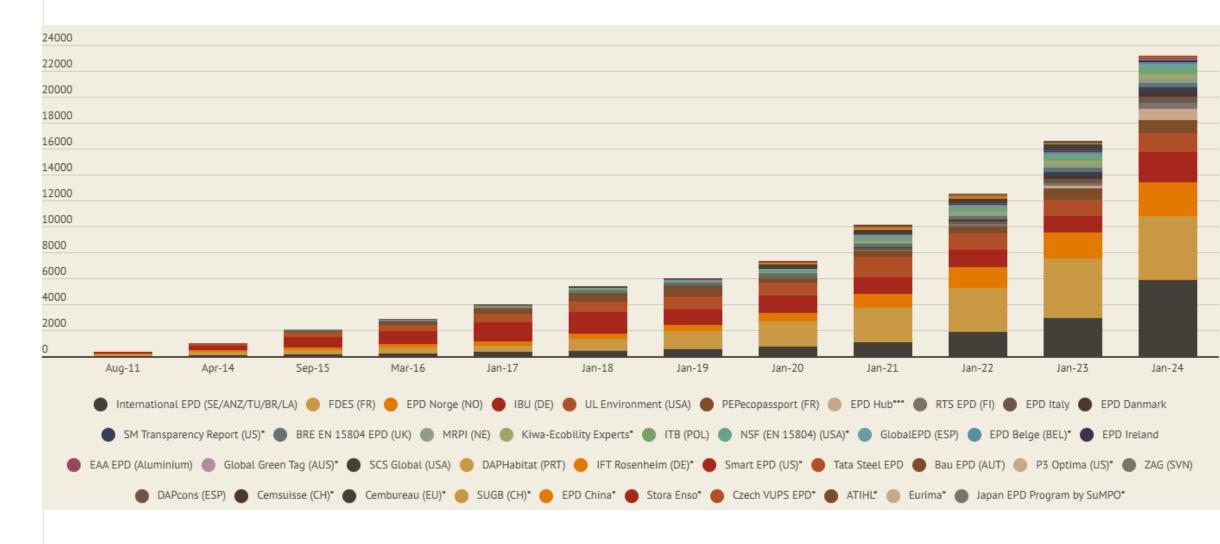
Types of EPD

EPD Owner	Product type	Site type	Example EPD
Manufacturer	Product Specific EPD	Site specific EPD	<u>Kingspan – EPD for Benchmark Quadcore Evolution Insulated Panel manufactured at Holywell the UK</u>
specific		Average site EPD	British Gypsum Saint Gobain – EPD for 12.5mm Gyproc WallBoard – based on 4 sites in the UK
	Average Product EPD	Site specific EPD	Aggregate Industries – EPD for average granite aggregate produced at the Glensanda Quarry in the UK
		Average site EPD	Etex Building Performance – EPD for average GTEC Plasterboard products produced at 2 sites in the UK
	Representative Product EPD	Site specific EPD	No example found
		Average site EPD	<u>Hanson UK – EPD for UK Average Ready Mix Concrete – based on a theoretical mix</u> of Hanson Concrete at 167 plants in the UK
Collective	Product Specific EPD	Average site EPD	British Precast Drainage Association – EPD for UK Manufactured DN600 Concrete Pipe with Class B Bedding – data from 3 member companies Cembureau – EPD for Portland Cement (CEM I) – data provided by the national cement associations in France, Germany, Italy, Poland, Spain, the United Kingdom and Turkey covering 74% of production in Cembureau countries.
	Average Product EPD	Average site EPD	Brick Development Association – EPD for average UK produced brick - members of the BDA covering 46 UK manufacturing sites and representing 99% of UK brick production.
	Representative Product EPD	Average site EPD	British Ready-mixed Concrete Association – EPD for UK manufactured generic ready-mixed concrete - manufacturing data covering 93% of production from member companies of the British Ready-Mixed Concrete Association and a defined mix design
	Worst Case EPD		Association for the European Adhesive and Sealant Industry (FEICA) – Model EPD for silicone-based construction sealants

EPD sources

- Digital EPD
- <u>Ecoplatform</u> (umbrella for European programme operators)
- See <u>this briefing</u> for a list and links to all European programme operator databases
- Environdec library (International EPD)
- EPD Registry

UK product summaries


- BRE verified UK EPD
- ASBP members (lots of sustainable products)
- Concrete sector EPD
- For timber, steel etc. see individual suppliers

Common questions on EPD

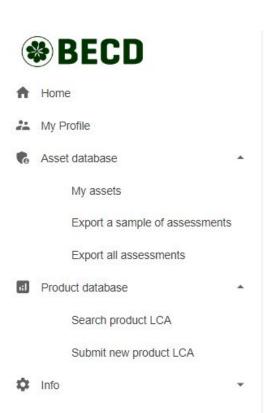
- What are the different types of EPD?
- Is carbon content the same as embodied carbon?
- How is biogenic carbon treated in EPD?

Growth in EPD to EN15804

Built Environment Carbon Database

Single location for product data & asset data

(launched on 5th October 2023)



IStruct≣

RIBA ₩

 \times

Typical assessment of a building

Material quantities e.g. from building model or BoQ

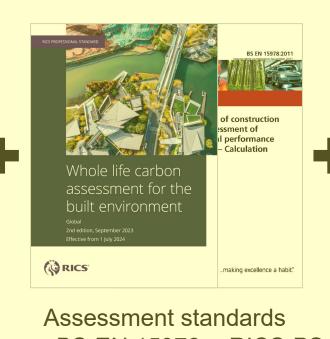
Product data from EPD or generic carbon factors Assessment standards e.g. BS EN 15978 + RICS PS

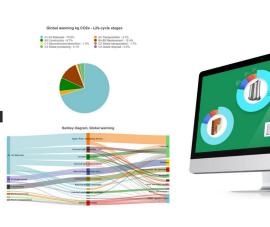
Software tool e.g. OneClickLCA

Built Environment Carbon Database

 \times

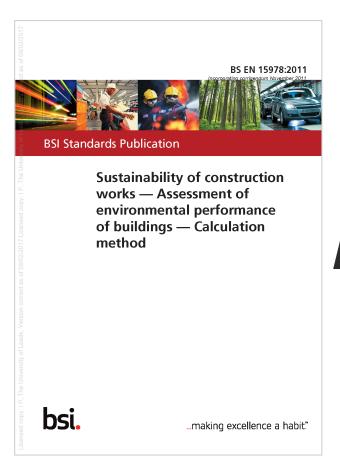
Typical assessment of a building




bre

Material quantities e.g. from building model or BoQ

Product data from EPD or generic carbon factors



e.g. BS EN 15978 + RICS PS

Software tool e.g. OneClickLCA

Standards for calculations + products

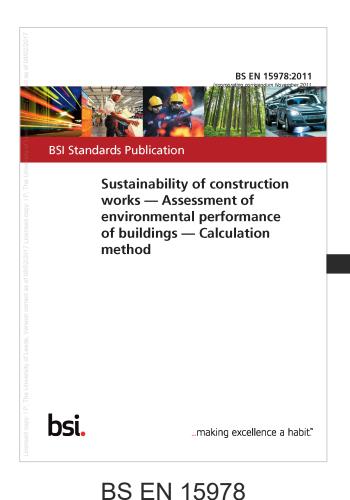
BS EN 15978 for buildings

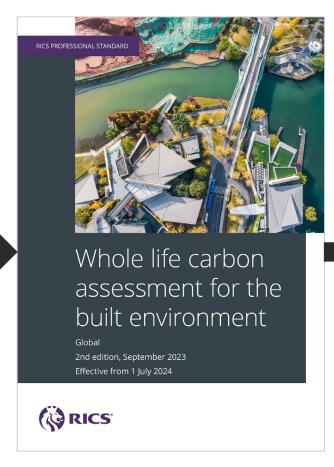
BS EN 17472 for civil engineering works

Product Category Rules

For infrastructure

BS EN 17472:2022 **BSI Standards Publication** Sustainability of construction works — Sustainability assessment of civil engineering works — Calculation methods bsi.





BS EN 17472

Guidance or standards by asset type/client

For buildings

Welcome to the

Built Environment

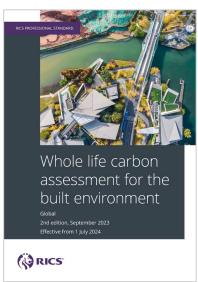
Carbon Database

BECD

Version 1.0.0

RICS PS

Evolution of reporting standards


BS EN 15978 RICS PS BECD

RICS PS Whole life carbon assessment

1st edition published in 2017

31 pages plus 3 appendices

2nd edition published in September 2023

Effective from 1st July 2024

137 pages plus 17 appendices & 6 templates

Steps in whole life carbon assessment

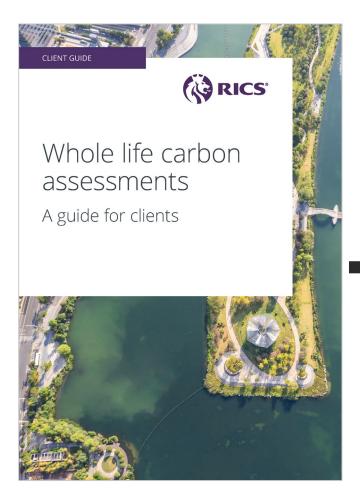
Review, reduce, re-evaluate at key project phases Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Initiate Collate Components Assess Assess potential Assess post Compile benefits and project inventory assessment emissions completion report of information loads beyond and energy to project emissions steps 1-6 completion over RSP system boundary sources Define Project BIM List and project quantify all model Modules Reporting Modules: Modules scope and construction BoO/cost B1-B8 and assumptions A0-A5 Scope D1 and D2 identify plan elements C1-C4 Data sources assessment Consultant's and energy boundaries drawings sources

International **UK ecosystem** standards ISO 14040, ISO 14044 BS EN 15978, BS EN 17472 **Assessment** UK Net Zero Carbon Voluntary standard standard **Buildings Standard** Local planning requirements **BECD Product & asset** databases assessment for the **Public procurement** built environment standards PART Z **Industry-proposed** regulation (RICS --- proposal Guidance, supplementary standards & benchmarks **Tools** One Embodied carbon in building services: How to calculate Consistency in Whole Life Carbon management in buildings and infrastructure Whole life carbon assessments CARBON **FCBS CARBON** Presptima **ECCOLAB**

RICS

RIBA

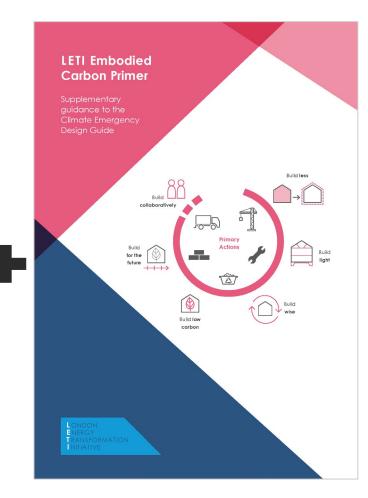
CIBSE

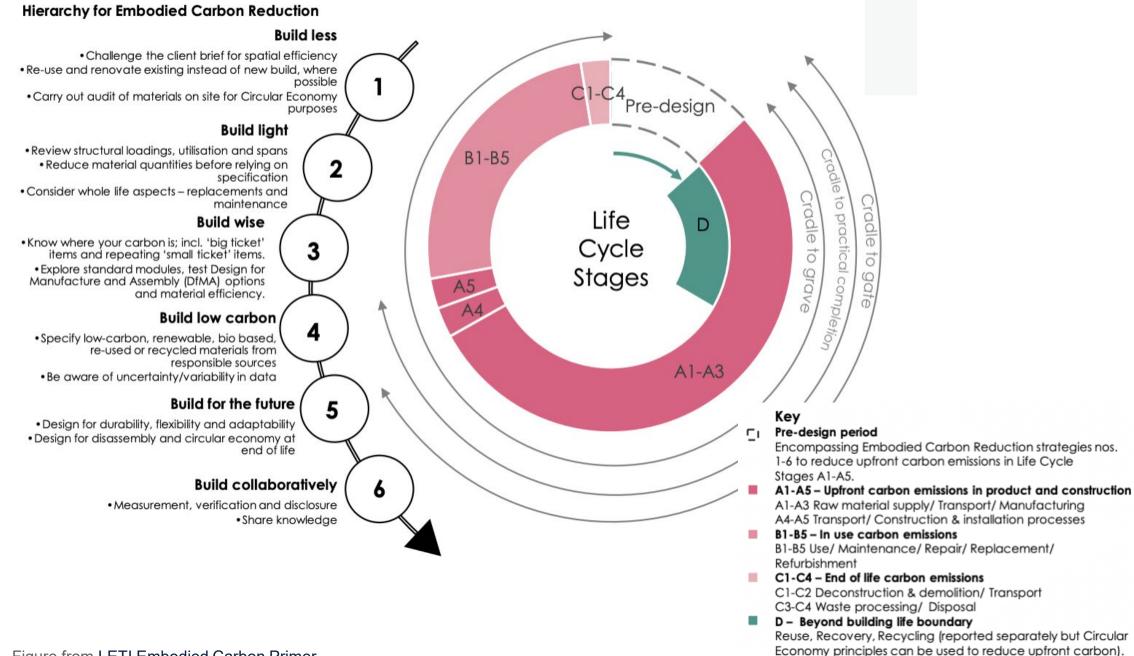

IStructE

LETI

PAS2080 UKGBC

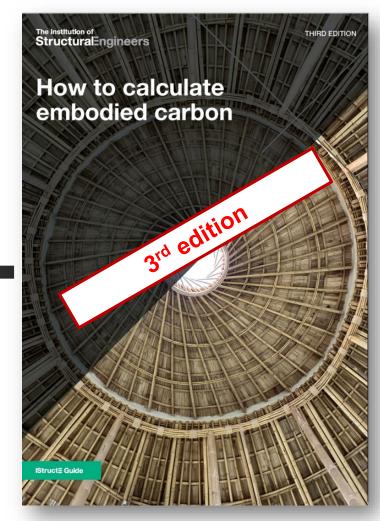
WLCN


Introductory guidance


RICS Client Guide

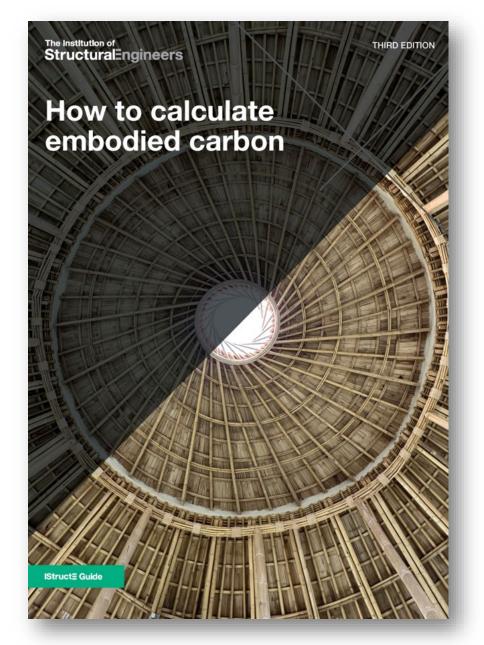
RIBA guide for architects

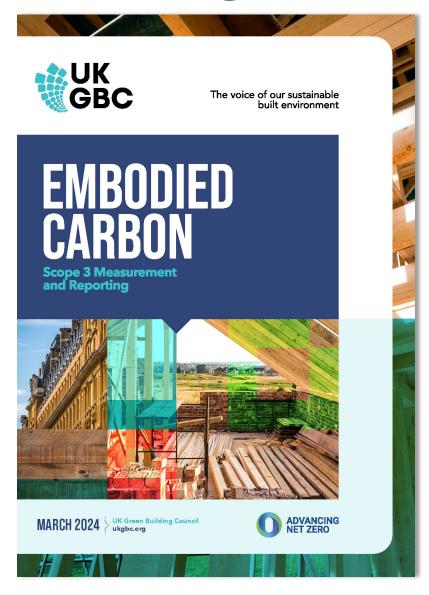
LETI primer

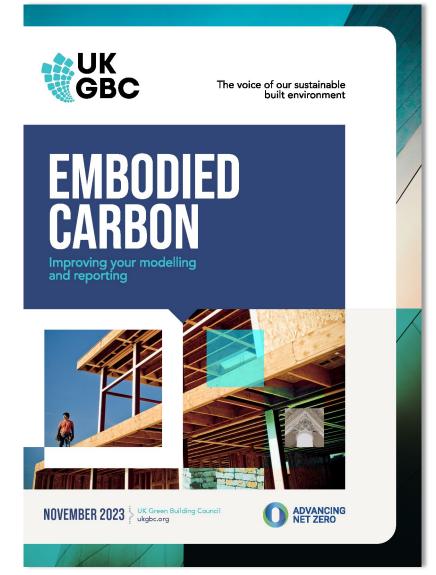


Other key UK guidance

Embodied carbon in building services: a calculation methodology

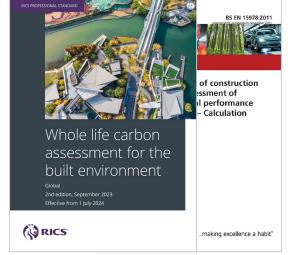



IStructE methodology

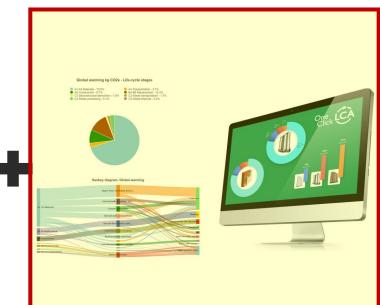

Updates in third edition

- Lifecycle modules updates
- Concrete, steel & timber guidance
- Carbon factors
- Building elements scope
- Default material quantity allowances
- Bridges guidance
- Notable references to RICS PS guidance
- ... and more!

UKGBC guidance


 \times

Typical assessment of a building


factors

Assessment standards e.g. BS EN 15978 + RICS PS

Material quantities e.g. from building model or BoQ

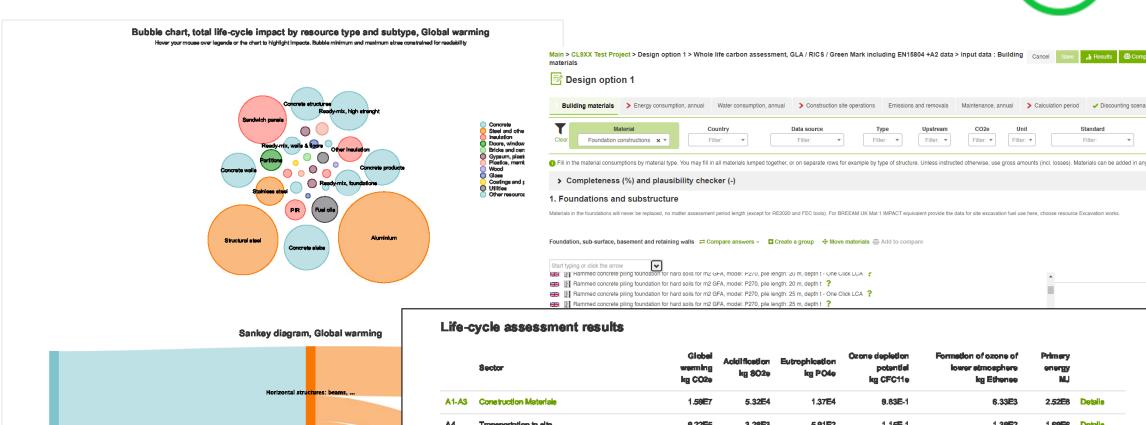
Product data from EPD or generic carbon

Software tool e.g. OneClickLCA

Calculation tools

ECCOLAB

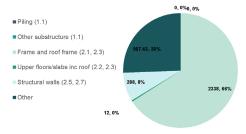
The Structural Carbon Tool v2



+ many more!

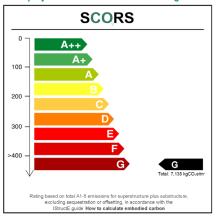
Example – One Click LCA

A1-A3 Materials	Horizontal structures: beams,
	Vertical structures and facade
	Foundations and substructure
A4 Transportation	Building technology
AS Construction	Energy use on the site
C) -C4 End of life B1-B5 Maintenance and replacem	Other Structures and materials


	Sector	Globel werming kg CO2e	Addification kg 802e	Eutrophication kg PO4e	Ozone depletion potential kg CFC11e	Formetton of ozone of lower etmosphere leg Ethenee	Primery energy MJ	
A1-A3	Construction Materials	1.59E7	5.32E4	1.37E4	9.83E-1	6.33E3	2.52E8	Detaile
A4	Transportation to elte	9.22E5	3.28E3	5.91E2	1.1 5E -1	1.39E2	1.6906	Detaile
A5	Construction/installation process	4E5	1.12E3	1.64E2	7.61E-2	5.95E1	6.81E6	Detaile
B1-B5	Maintenance and material replacement	2.75E4	1.07E2	1.6E3	1.07E-3	9.92E0	3.46E5	Detaile
B6	Energy use	QEQ.	QEQ	QEQ	QEQ	OEO	0E0	Detaile
B7	Water use							Hide empty
Ç1-Ç4	Deconstruction	2.41E5	7.51E2	1.68E2	2.92E-2	3.78E1	4.49⋿6	Detalle
D	External Impacte (not included in totale)	-6.93E6	-2.47E4	-2.8E3	-3.92E-2	-1.85E3	-1.12E8	Detaile
	Total	1.75E7	5.85E4	1,6254	1.250	6.56E3	2.85E8	

Example – Structural Carbon Tool

TSCT v1.1			Scheme name	Superstru	ucture							The Instit Struc	tution of	ngineers
Material	Material Type	Material Specification	Structural Element	Description	Volume [m³] or Mass [kg]?	Material Quantity [m ³ , kg]	Reinforcement [kg/m³]	Element Embodied Carbon [tCO ₂ e]	A1-A3	A4	A5w	C2-C4	D	Sequestration
Steel	Structural_sections	Europe avg EPD	Other	Columns	Mass [kg]	144,000		190	163	23	2	3	-59	
Concrete	Insitu	C32/40 - 25% GGBS	2.3 Roof beams	Beams	Mass [kg]	19		0	0	0	0	0	0	
Steel	Structural_sections	World avg	2.3 Roof beams	Beams	Volume [m3]	170		2360	2068	244	23	24	-454	
Steel	Plate		Other	Connections and baseplates	Volume [m3]	31		622	604	8	6	4	-394	
Concrete	Insitu	C32/40 - 25% GGBS	2.2 Upper floors/slabs	Stair slabs	Volume [m3]	37		13	- 11	0	- 1	2	0	
Concrete	Insitu	C32/40 - 25% GGBS	2.2 Upper floors/slabs	Composite floors	Mass [kg]	765	General Slab (110)	0	0	0	0	0	0	
Custom_EPD	Steel_EPD	Steel profiles	Other	Composite floors	Mass [kg]	32,000		94	88	- 1	5			
Custom_EPD	Steel_EPD	Steel mesh	Other	Composite floors	Volume [m3]	32		7	7	0	0			
Custom_EPD	Other_EPD	brick 7.3	2.5 Structural ext. walls	Masonry walls	Volume [m3]	208		45	33	- 1	11			
Custom_EPD	Other_EPD	Block 10	2.5 Structural ext. walls	Masonry walls	Volume [m3]	852		243	179	3	61			
Timber	Studwork_framing_flooring	Softwood	2.3 Roof beams	Timber beams	Volume [m3]	5		2	1	0	1	4	-1	-4
1.1 Excavation-Foundation	n				Mass [kg]	0								
1.1 Excavation-Other														
		CO ₂ e	A1 - A5: Sequestered carbon:	3,569 tCO ₂ e -4 tCO ₂ e	7,138 kgCO₂e/m -8 kgCO₂e/m	2		Global Values [tCO ₂ e] Total [tCO ₂ e]	A5a 24 A 3569	C1 2 C	D -908	_	stration	
		Substructure & Superstructure	A-C: Module D:	3,603 tCO ₂ e -908 tCO ₂ e	7,207 kgCO₂e/m -1,817 kgCO₂e/m			Total [ICO2e]	3009	39	-906		•	l
		Superstructure	Module D.	-500 tOO2e	-1,017 KgCO ₂ e/III	_								



This project scheme releases carbon equivalent to:

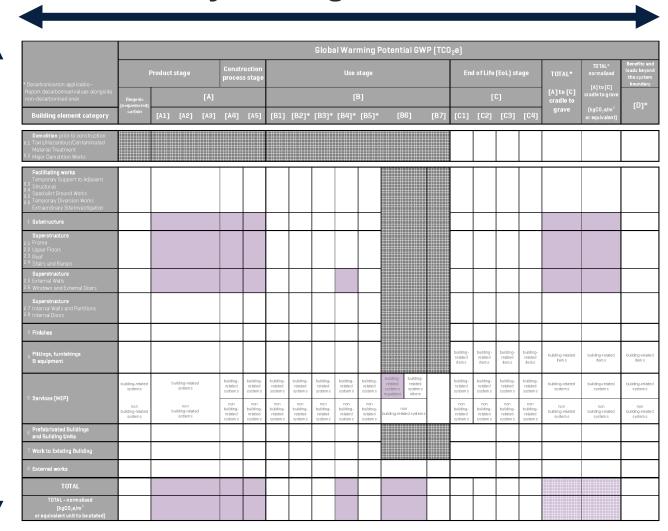
This project scheme has a SCORS rating of G

The Structural Carbon Tool was produced by Elliott Wood Partnership Limited in partnership with The Institution of Structural Engineers

Future Homes Hub Conventions & Tool

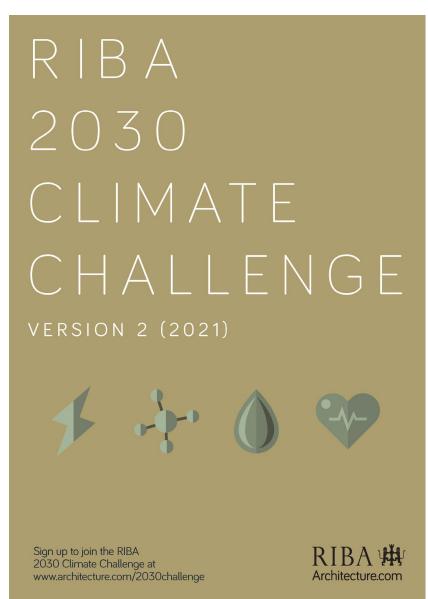
Launched in 2024:

- Whole Life Carbon Conventions for New Homes to help the sector consistently measure & share
- Future Homes Carbon Assessment
 Tool accessible to SMEs & others
 starting on this topic


<u>Z</u>

elements

Building


Typical modular reporting

Life cycle stages & modules

RIBA & LETI targets for buildings

Upfront Carbon, A1-5 (exc. sequestration)

	Band	Office	Residential	Education	Retail
	A++	<100	<100	<100	<100
	A+	<225	<200	<200	<200
LETI 2030 Design Target	A	<350	<300	<300	<300
0 0	В	<475	<400	<400	<425
LETI 2020 Design Target	U	<600	<500	<500	<550
	D	<775	<675	<625	<700
	ш	<950	<850	<750	<850
	E	<1100	<1000	<875	<1000
	G	<1300	<1200	<1100	<1200

Embodied Carbon, A1-5, B1-5, C1-4 (inc. sequestration)

	Band	Office	Residential	Education	Refail
	A++	<150	<150	<125	<125
	A+	<345	<300	<260	<250
	Α	<530	<450	<400	<380
RIBA 2030 Built Target	В	<750	<625	<540	<535
2011.101.901	C	<970	<800	<675	<690
	Q	<1180	<1000	<835	<870
	ш	<1400	<1200	<1000	<1050
	F	<1625	<1400	<1175	<1250
	G	<1900	<1600	<1350	<1450
-					

All values in kgCO₂e/m² (GIA)

LETI grades – King's Cross Sports Hall

Embodied Carbon Target Alignment

This document has been produced to provide alignment in Embodied Carbon measurement and comparisons. The industry needs to tandardise performance and reporting scopes to meet IPCC recommendations for urgent nissions reductions. LETI have worked with RIBA, the GLA, IStructE and the UKGBC to produce this document.

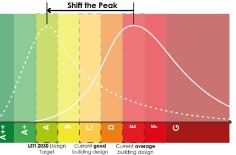
A key issue the industry faces is the lack of consistent measurement, leading to mis-aligned benchmarks, project targets and claims.

Alignment in methodology is considered the interim step towards developing net zero carbon targets that reflect the UK's carbon budget. Targets will only be useful once is consistent. The UKGBC's 2021 Whole Life Carbon Net Zero Roadmap project will depend sectoral carbon budget estimates which will assist in future more detailed buildinglevel target setting.

The industry must push for Embodied

- Carbon reporting on all projects.

 A rating system should be introduced to allow quick comparison of ambition
- across various typologies and portfolios Total embodied carbon targets have been introduced
- Targets for retail have been develope LETT and RIBA now have consistent embodied carbon target
- Data disclosure and breakdowns are key to ensuring reporting is valid and


RIBA # WLCN StructuralEngineers

reported against: Upfront Carbon (modules A1-5, excluding Carbon (A1-5, B1-5, C1-4, including

The Case for Letter Bandinas

comparison of embodied carbon ambition across typologies and facilitation of conversations about embodied carbon with key decision makers. Using a letter rating system. which is already familiar in the context of Display professionals to talk about an "A rated" building and know that they are talking about the same level of ambilion regardless of the project. A rating system can support competition across various levels of ambition, something which is particularly useful in portfolio reporting (either to building owners or in schemes like the RIBA

Current best-practice performance is nsidered to be a C rating, while a B and Though only 4 typology rating bands are provided currently, the methodology can be repeated for other typologies or scopes of work as more data becomes available. The bandings do not currently differentiate between new build or refurbishment. Part of the rationale for this is that returbishment projects will find it easier to achieve good performances and this provides an incentive for retrofit. It is expected that as more data is collected for ran retrofit, the bandings could be adapted if

Using the ratings
The LETI position is that for buildings that are currently in the design stage:

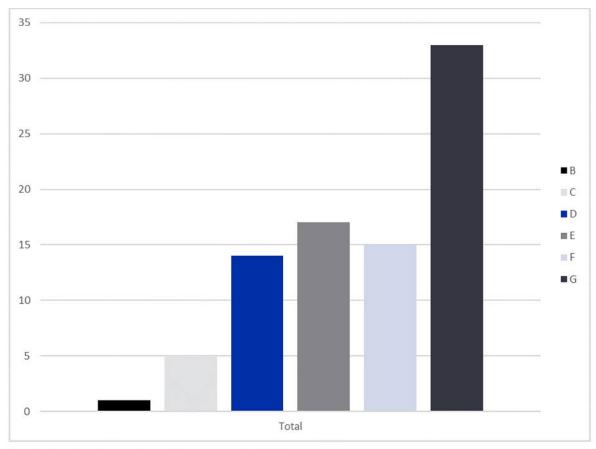
- Average design achieves an I Good design achieves a C (LETI 2020)
- LETI 2030 design target achieves an A The RIBA 2030 Climate Challenge built performance

is equivalent of a B rating (note that this assumes practical completion in 2030, so designed earlier).

- This document is designed to be read with other LETI documents including the:
- LETI Embodied Carbon Primer
 Whole Life Carbon and Embodied Carbon
- One Pagers Net Zero Carbon Definitions
- Reporting templates on the LETI website
- FAQs available on the LETI website

Project Name Test Project Project Sector Office	Uphont Embodied Carbon	Life Cycle
Assessment Date 14/02/2022	Al-5	Embodied Carbon
Assessment By (company) .bll	exp. sequestration	A1-5, 81-5, C1-4
Incetion of Date let London	(NeCOperer)	(kg00yem)
A++		
A+		
A.		
A		
В		
С	c 573	970
D	m	D 1035
E Current America		
F		140
r		
G		
Non-Listed Typology:		
Sequestered Carbon		
	Module D:	

Proposed rating 'badge



LETI have published a great series of case studies including this example here

SCORS example

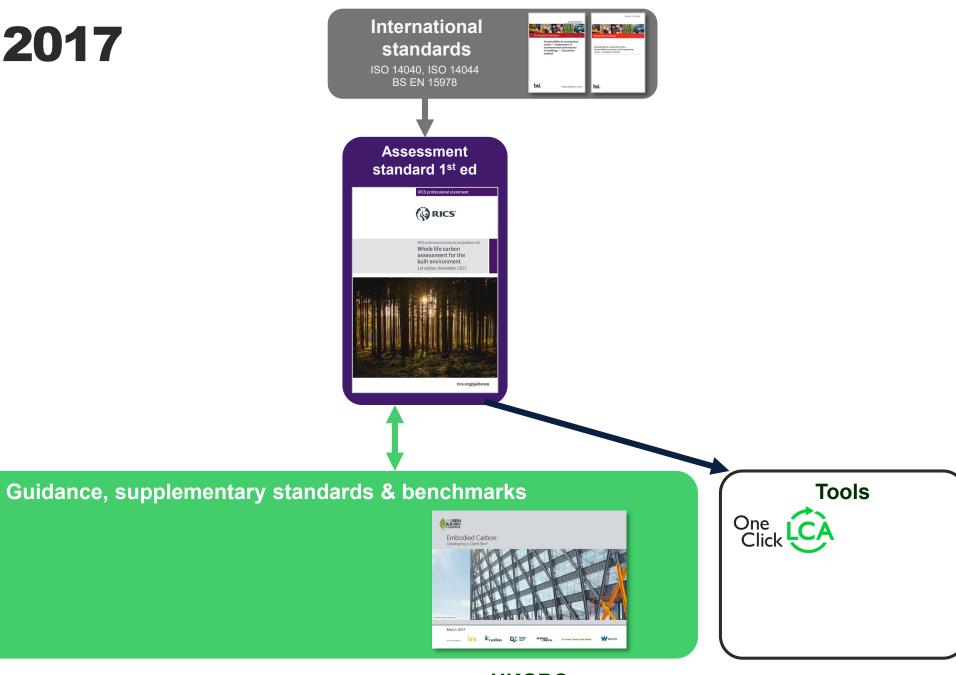
Price & Myers 2021 projects dataset SCORS

Graph showing the number of designs in each SCORS category

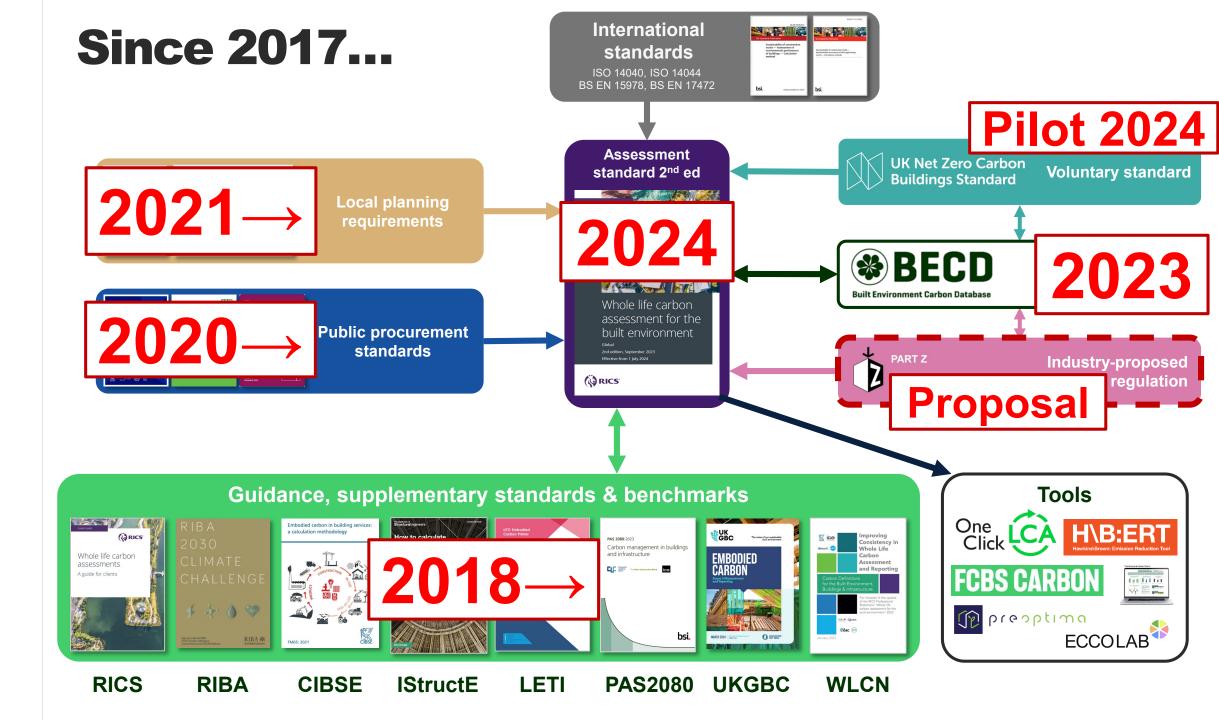
HOW IS THE ECOSYSTEM EVOLVING?

Voluntary standards, public procurement requirements, regulations etc.

International **UK ecosystem** standards ISO 14040, ISO 14044 BS EN 15978, BS EN 17472 **Assessment** UK Net Zero Carbon Voluntary standard standard **Buildings Standard** Local planning requirements **BECD Product & asset** databases assessment for the **Public procurement** built environment standards PART Z **Industry-proposed** regulation (RICS --- proposal **Guidance, supplementary standards & benchmarks Tools** One Embodied carbon in building services: Consistency in Whole Life Carbon management in buildings and infrastructure Whole life carbon assessments CARBON **FCBS CARBON** 1 Presptima **ECCOLAB RIBA CIBSE**


RICS

IStructE


LETI

PAS2080 UKGBC **WLCN**

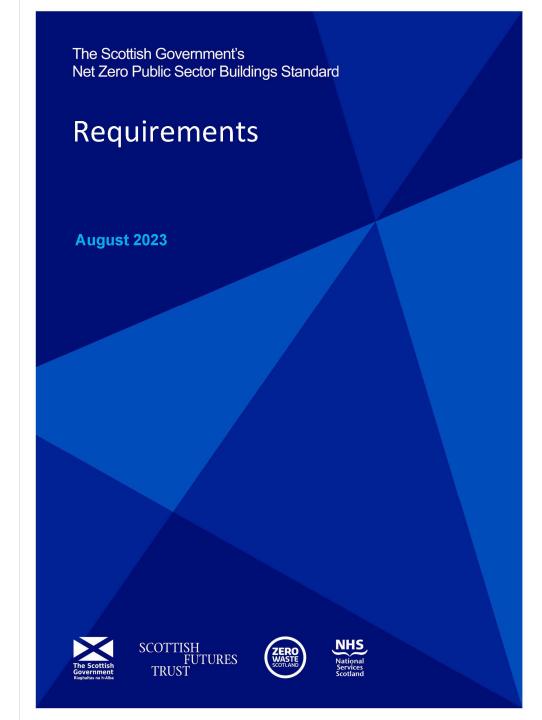
UK in 2017

UKGBC

International **UK ecosystem** standards ISO 14040, ISO 14044 BS EN 15978, BS EN 17472 **Assessment** UK Net Zero Carbon Voluntary standard standard **Buildings Standard** Local planning requirements **BECD Product & asset** databases assessment for the **Public procurement** built environment standards PART Z **Industry-proposed** regulation (RICS --- proposal Guidance, supplementary standards & benchmarks **Tools** One Embodied carbon in building services: How to calculate Consistency in Whole Life Carbon management in buildings and infrastructure Whole life carbon assessments CARBON **FCBS CARBON** Presptima **ECCOLAB**

RICS

RIBA


CIBSE

IStructE

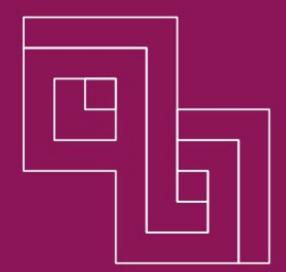
LETI

PAS2080 UKGBC

WLCN

Objective 2: Construction Embodied Carbon

Targets 600 kgCO₂e/m² for upfront carbon" (A1-A5 for new build or B4-B5, C1-C4 for existing buildings)


Alongside range of other related objectives e.g. OB.4 on 'Other whole life carbon'

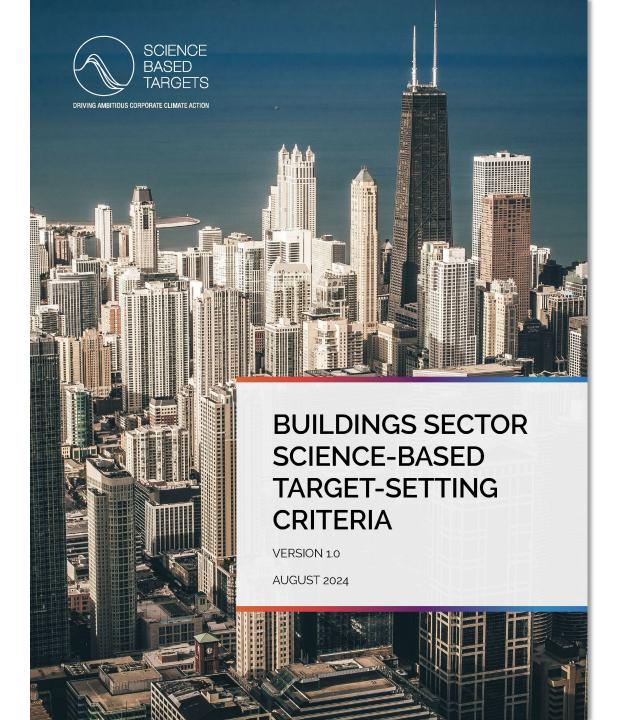
THE CONSTRUCTION PLAYBOOK

Government Guidance

on sourcing and contracting public works projects and programmes

Contracting authorities should adopt the use of whole life carbon assessments to understand and minimise the GHG emissions footprint of projects and programmes throughout their lifecycle...

Contracting authorities should require that solutions put forward by potential suppliers are accompanied by a whole life carbon assessment."


NHS Net Zero Building Standard

Ensure a WLC assessment is undertaken at each design stage, and used to inform design decisions, with data assessed, captured, and reported for all materials" "Project bespoke Upfront Carbon Limits must be established by the client and project team...for sub-structure, super structure and facade...all other building components and lifecycle stages must be assessed and reported"

See Chapters 3-4 & Whole Life Carbon Compliance Tool for further detail

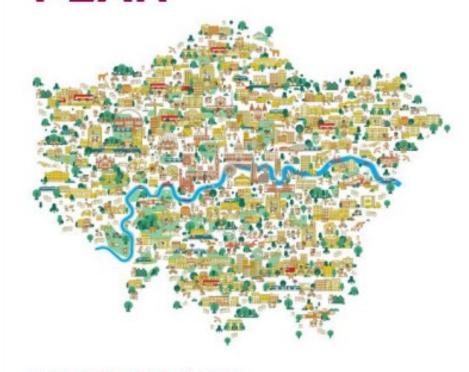
New SBTi criteria

August 2024 launch of buildings sector criteria and target setting tool

International **UK ecosystem** standards ISO 14040, ISO 14044 BS EN 15978, BS EN 17472 **Assessment UK Net Zero Carbon** Voluntary standard standard **Buildings Standard** Local planning requirements **BECD Product & asset** databases assessment for the **Public procurement** built environment standards Industry-proposed regulation (RICS Guidance, supplementary standards & benchmarks **Tools** One Embodied carbon in building services: How to calculate Consistency in Whole Life Carbon management in buildings and infrastructure Whole life carbon assessments CARBON **FCBS CARBON** presptima (**ECCOLAB**

RICS RIBA CIBSE ISI

IStructE


LETI

PAS2080 UKGBC

WLCN

MAYOR OF LONDON

THE LONDON PLAN

THE SPATIAL DEVELOPMENT STRATEGY FOR GREATER LONDON

MARCH 2021

London Policy SI2

F Development proposals referable to the Mayor should calculate whole-life cycle carbon emissions through a nationally recognised Whole Life-Cycle Carbon Assessment and demonstrate actions taken to reduce life-cycle carbon emissions

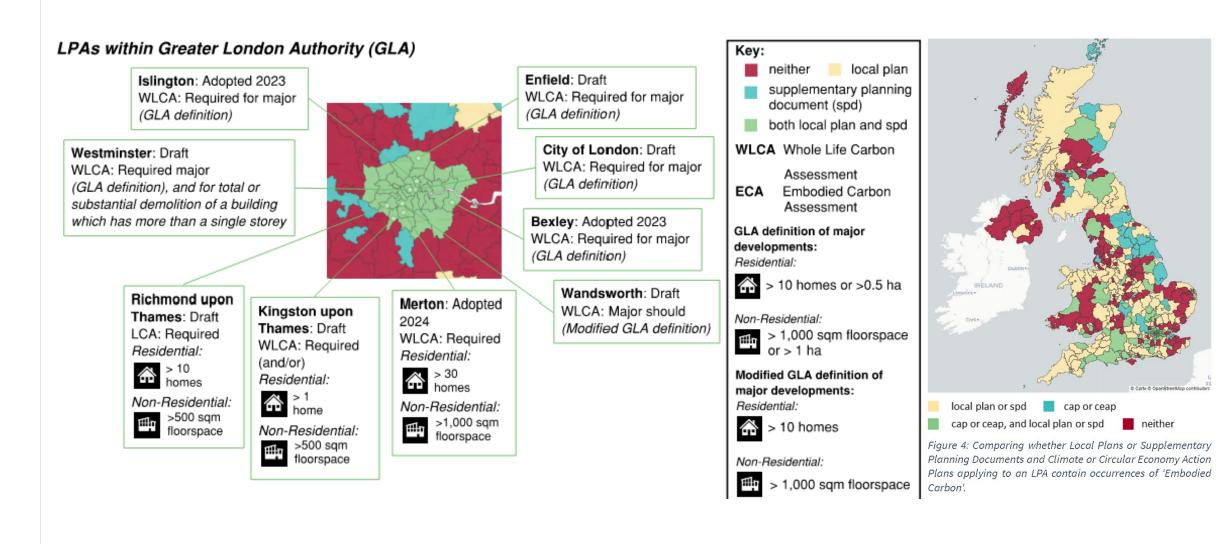
3 stage process

- 1. Pre-application
- 2. Stage 1 submission (i.e. RIBA Stage 2/3)
- 3. Post-construction

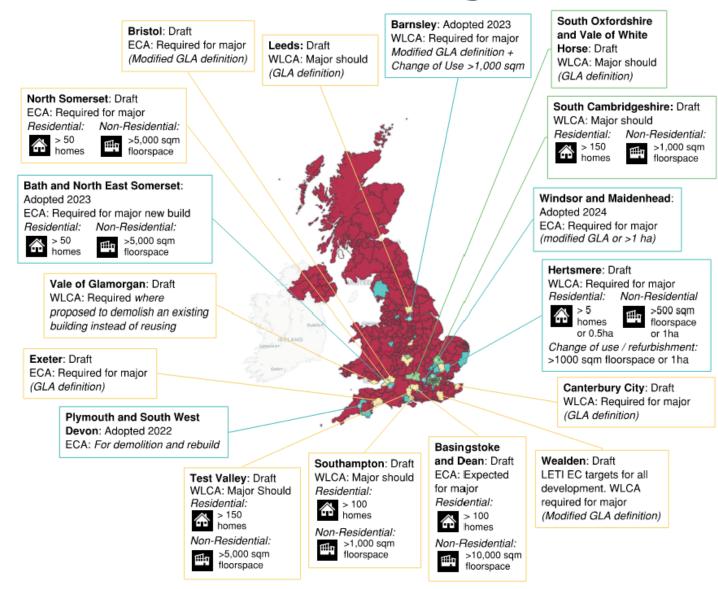
Results submitted using common template

B&NES Policy SCR8

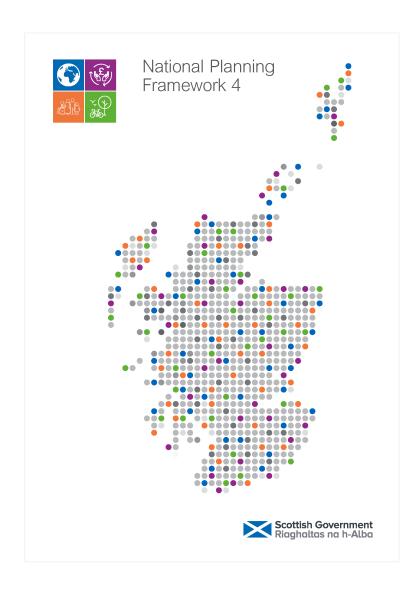
"Large scale new-build developments (a minimum of 50 dwellings or a minimum of 5000m² of commercial floor space) are required to **submit an Embodied Carbon Assessment** having regard to the Sustainable Construction Checklist SPD that **demonstrates a score of less than 900kgCO**₂**e/m**² can be achieved within the development for the substructure, superstructure and finishes."


The B&NES Local Plan Partial Update incorporating the Main Modifications, Additional Minor Modifications and delegated changes

BATH AND NORTH EAST SOMERSET COUNCIL


Local Plan (Core Strategy and Placemaking Plan) Partial Update

Adopted by the Council on 19th January 2023


Proliferation of local requirements

Requirements beyond London

NPF4

Development proposals will be sited and designed to minimise lifecycle greenhouse gas emissions as far as possible"

 \times

Example – Moray

Moray Council Carbon Guidance for Planning Applications and S36 and S37 consents

Purpose

To support the development management process to determine planning applications against Policy 2 of National Planning Framework 4, which requires that "development proposals will be sited and designed to minimise lifecycle greenhouse gas emissions as far as possible" and "development proposals will be sited and designed to adapt to current and future risks from climate change".

Threshold

This guidance will apply to:

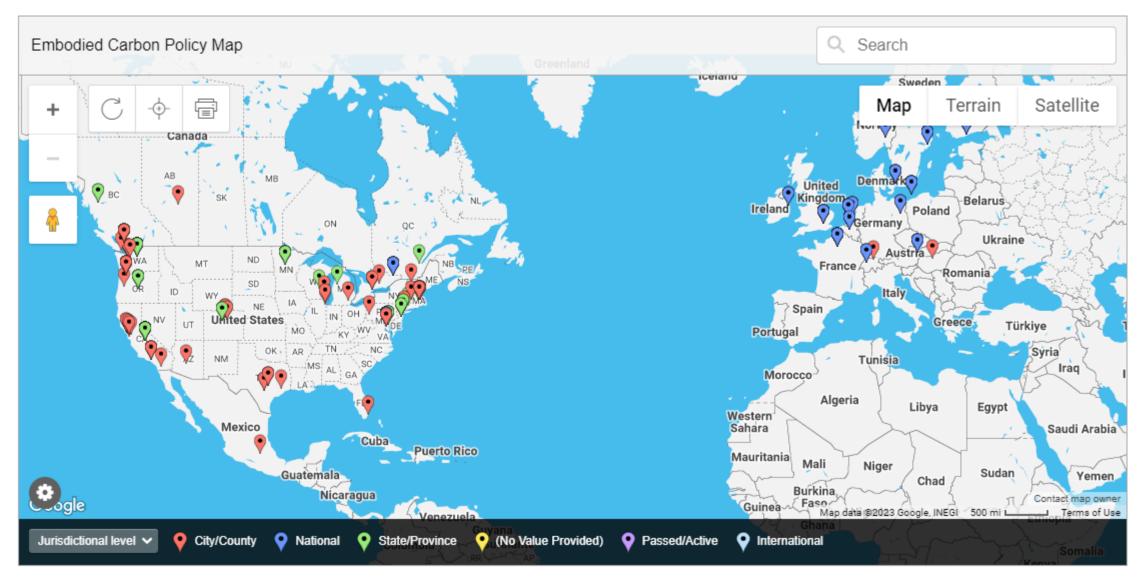
- residential developments of 10 or more units
- commercial, industrial, retail, leisure, infrastructure developments where floor space is 1,000 square metres of more
- Energy related developments of 5MW or more (including battery storage, grid infrastructure and energy production).

Requirements

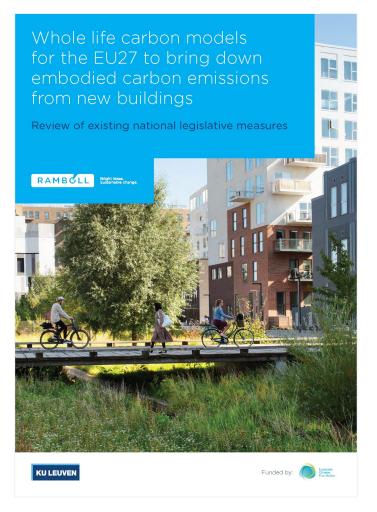
All planning applications within the stated threshold will be required to submit the following information. Submissions should address the questions raised within this guidance, as appropriate to the development:

Overview of development and key carbon and climate considerations

- Provide a brief overview of the development and the main considerations being given to whole life carbon reduction.
- How does the development meet the needs of the current climate and future climate scenarios? How is the development designed with future climate risks in mind, or how may it be adapted to suit these changes in the future?


· Whole life carbon assessment

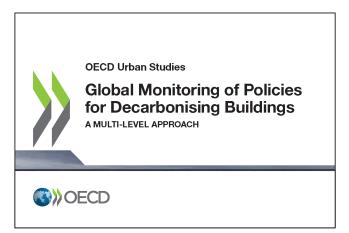
- Which nationally recognised whole life carbon assessment method will be used (e.g. BS EN 15978, with additional guidance from RICS Professional Statement), and why was this method chosen?
- Where will embodied carbon emissions occur within the proposed development, and how will these be measured and minimised? Provide breakdown of embodied carbon emissions by source and by each stage of the development's life cycle.
- Where will operational carbon emissions occur within the proposed development, and how will these be measured and minimised through design? Provide a breakdown of operational carbon emissions by source and by development life cycle stage.
- What does net zero emissions mean in the context of the proposed development and when will it be achieved? How will net zero emissions be achieved on this development, including specific low carbon measures or renewable energy systems that will be implemented?
- If the proposed development does not achieve net zero emissions, provide an estimate of the annual tonnes of carbon emissions that will require offsetting to achieve net zero (refer to carbon sequestration statement section).


Carbon Guidance

Sets out range of requirements for developments above a threshold including: breakdown of embodied carbon emissions by source and stage, responses to range of questions about method, strategy, carbon management, reporting etc.

Interactive global policy map

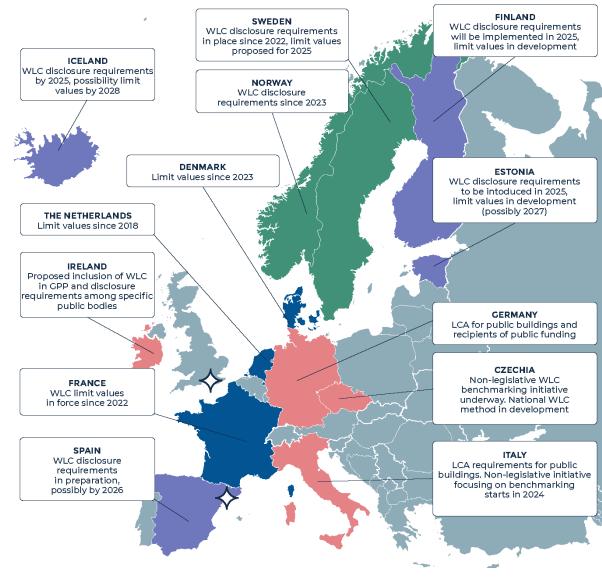
International policy reviews


International regulations

- WLC regulation with limit values in force
- WLC disclosure requirements in force
- for WLC measurement and benchmarking

 Local jurisdictions with disclosure requirements linked to permits of public procurement

Other non-legislative requirements in place or preparing


WLC legislation (disclosure/limit values)

11% of respondents: embodied carbon in policy, further 43% of respondents 'future priority'

EU Energy Performance in Buildings Directive: regulating embodied carbon **starting 2028**

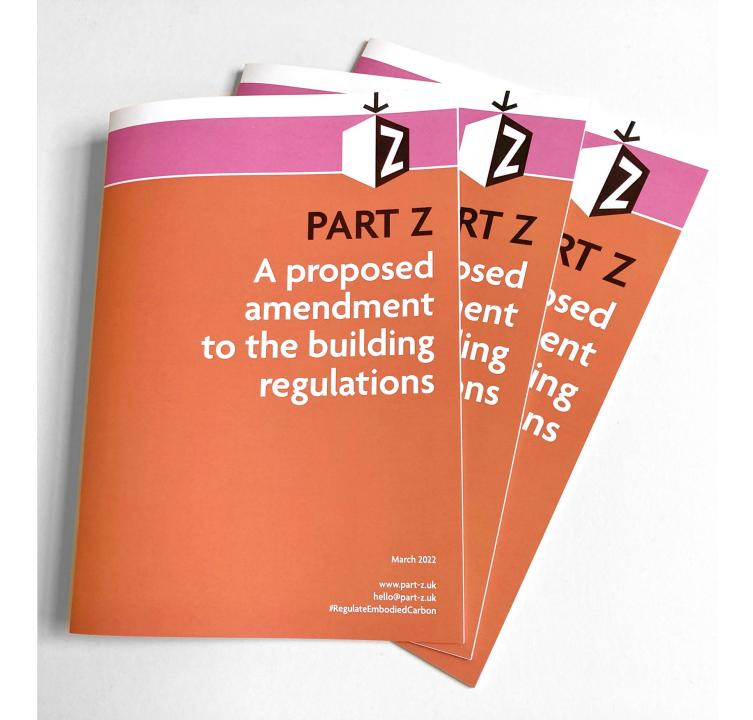
Statement of Requirements (Draft)

Measurement and Reduction of Embodied Carbon in New Buildings (CPD4124072)

Future Opportunities Notice

1. SCOPE OF REQUIREMENT

- 1.1 Through the contracted work, The Authority is seeking to establish detailed baselines on matters regarding WLCAs and reduction of embodied carbon in new buildings to inform policy development. The work has been divided into the below six in-scope areas:
 - 1) The robustness of WLCAs, uncertainties in data used and their results and the challenges that creates for decision-making.
 - 2) The impacts to business of carrying out WLCAs.
 - 3) The supporting structure and data needed for WLCAs.
 - 4) The design and construction choices that are made following WLCAs.
 - 5) The appropriate and cost-effective areas for carbon savings and the relative savings available.
 - 6) The design and material choices that would be encouraged by embodied carbon reduction and the impacts of those choices.
- 1.2 Across these six areas, the work will need data gathering and analysis, technical and practical modelling, and economic analysis in line with Green Book and related methodology and requirements. Also in scope are the possibilities of support for a public consultation and production of impact assessments.
- 1.3 Given the range work required, especially the inclusion of economic analysis, the Authority expects that many bidders will need the support of external contractors or consortium partners to ensure relevant expertise.
- 1.4 As this is a developing area of policy the Authority intends for the contract to have a call-off element to allow additional (or changed) work. This could be influenced either by results from earlier work under the contract or policy development by the Authority.


2. BUDGET AND TIMELINE

- 2.1 The maximum budget for the contract will be £250,000 (exc. VAT). Within that budget, the Authority intends that up to £50,000 (exc. VAT) will fund the call-off elements (see para 1.4).
- 2.2 The contract is likely to begin in March 2023 and run until March 2024.

MHCLG research

- DLUHC recruited AECOM to deliver 6 outputs staged across FY23/24 Q1-Q4
- Some initial outputs were presented at BE-ST Fest 2023
- Research completed and now awaiting publication

73

Part Z

Industry led proposed amendment to Building Regulations in England & Wales and suggested document for approval

Regulating Embodied Carbon in Scotland's Buildings

Prepared by: Jim Hart, Jannik Giesekam, Francesco Pomponi & Ruth Saint

Date: 31 March 2022

March 2022 report

- Report sets out proposals for developing regulation of embodied carbon in Scotland's buildings
- Reviews equivalent policies in other nations
- Considers the who, what, where, why & how of implementing regulations in Scotland
- Includes suggested timeline & programme of work

ANY QUESTIONS?

jannik.giesekam@strath.ac.uk